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possible packing modes. Polymorph 2 has two intramolecular nonbonded
nitrile N-Ni contacts (3.17 and 3.18 A) occupying "pseudo-octahedral"
positions. Polymorph 3 has two intermolecular nonbonded isothiocyanante
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has both distinct features trans to one another. The crystal structure
of polymorph 1 is composed of molecules interacting along two "noncross-
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interacting along cross-linked helical arrangements. However, the three
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The Conformk_.ok.l Polymorphism of Ni(NCS)j2 P(CH=CH CN) 3 ':

A Crystallographic Study of Three Polymorphs

Bruce M. Foxman, Paul L. Goldberg and Harry Mazurek

Contribution from the Department of Chemistry

Brandeis University, Waltham, MA 02254

Abstract: Three conformational polymorphs of Ni[NCS32[P(CH 2CH2CN)3 :2

have been synthesized and their crystal structures determined by

single-crystal X-ray diffraction techniques. All three crystallize

in space group P21/c: cell constants for polymorph 1, a = 13.44(2) A,

b = 9.04(l) A, c = 24.45(2) A, and B = 115.4(1)0; polymorph 2,

a = 16.153(5) b, b 12.393(4) A, c = 13.852(4) A, and a = 107.89(4)0;

polymorph 3, a = 11.032(3) A, b 10.335(3) A, c = 11.801(4) A,

and S = 107.21(5)0. Full matrix least-squares refinement of posi-

tional and thermal parameters led to R = 0.205, R w = 0.224; R =

0.070, Rw 
= 0.107; and R = 0.038, Rw = 0.045 for polymorphs 1, 2,

and 3, respectively, with 519, 2499 and 1852 reflections (F > 3.92

c(F)).

All three complexes have the expected square-planar geometry.

However, polymorphs 2 and 3 have distinct bonding and packing environ-

ments, while the packing and non-bonded interactions of polymorph 1

display features common to both.
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The crystal structures may be viewed as a closed set in terms of

possible packing modes. Polymorph 2 has two intramolecular non-

bonded nitrile N-Ni contacts (3.17 and 3.18 A) occupying "pseudo-

octahedral" positions. Polymorph 3 has two intermolecular non-

bonded isothiocyanante S atom contacts (3.48 A) in "pseudo-octa-

hedral" positions. Polymorph 1 has both distinct features trans

to one another. The crystal structure of polymorph 1 is composed

of molecules interacting along two "noncrosslinked" helical arrange-

ments; polymorph 3 is composed of molecules interacting along cross-

linked helical arrangements. However, the three polymorphs are

not physically interconvertible. Polymorph 3 undergoes a reversible

phase change at 78'C to a fourth polymorphic form.

Introduction

Square-planar complexes of the type NiX 2CEP 2 (X = Cl, Br, or

I CEP = P:'CH 2CH2CNY3) undergo a series of interesting solid-state

transformations. Thus the square-planar, monomeric chloro- and

bromo- complexes react in the solid state to form an octahedral

4polymer, where the nickel centers are bridged by -P-CH2-CH2-C N-

1-3
moieties. These single-crystal reactions are characterized by

crystallographic and chemical specificity, as well as high stereo-

directionality.

The present study of the NiX 2CEP 2(X = NCS) system was prompted

by several exemplary observations:

• 47



(i) for X = NCS, polymerization does not occur, presumably owing

to the increased stability of the square planar monomers with iso-

thiocyanato ligands, but it is nevertheless of interest to compare

the structures of these complexes with thosewhere X = CI, Br or I;

(ii) solid state reactions may be viewed as pure polymorphic transi-

tions. Since polymerization occurs for X = Cl and Br, but not

for X = NCS (vide infra) the observation of possible phase transi-

tions in the absence of a chemical reaction is of interest; and

(iii) the role of the polyfunctional ligand CEP in promoting poly-

morphism or polymorphic transitions could be examined.

Syntheses of the square-planar Ni(NCS) 2CEP 2 complex lead to

the formation of three room-temperature polymorphs and, occasion-

ally, a bis(O-hydroxy ketone)chelate complex, [Ni(diacetone alcohol' 2 1

4tNi(NCS) 4 CEP 2 . One of the polymorphs transforms reversibly at

780 C to form a unique fourth polymorph. This paper reports the re-

sults of an X-ray structural study on the configurational and packing

interrelationships among the various polymorphs.

Experimental Section

General. X-ray powder and Gandolfi patterns were obtained using

a Supper powder/Gandolfi camera. The powder pattern of the high

" 1 temperature polymorph (vide infra) was obtained using a black paper

sleeve for the film and heating the capillary in the "open" camera

with a Bl.ake Industries Single Crystal Heater set between 800 C and

11000C.

4A~ -T 1 -.- _
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Synthesis of polymorph 1. Ni(NCS)2 (1.0 g, 5.7 mmol, ROC/RIC),

CEP (2.2 g, 11.5 mmol, Aldrich), 10 ml of reagent grade acetone,

and 10 ml of absolute ethanol were mixed, and unreacted material

removed by filtration. The red-orange flocculent product formed

in the filtrate, and was dried for 20 hrs in a vacuum desiccator

at room temperature.

Anal. Calcd. for Ni(CEP)2 (NCS)2 : C 42.80; H 4.31; N 19.96.

Found: C 42.95; H, 4.62; N 19.85: (Galbraith Laboratories, Inc.

Single, needle-shaped crystals were grown by dissolving Ni'NCS" 2

(0.10 g, 0.57 mmol) and CEP (0.11 g, 0.57 mmol) in 30 ml of CH3CN.

This was poured into one arm of an U-tube divided by a sintered

glass disc; absolute ethanol (30 ml) was poured into the other arm.

Poor quality single crystals were obtained by slow diffusion over a

two month period. X-ray powder diffraction showed these crystals

to be identical to the flocculent material.

Synthesis of polymorph 2. Ni(NCS' 2 (1.0 g, 5.7 mmoll, CEP

'2.2 g, 11.5 mmol), 10 ml of reagent grade acetone, 12 ml of abso-

lute ethanol, and 2 ml of triethyl orthoformate were mixed in a

stoppered flask. After two days a red product crystal was picked

from among the flocculent precipitate. To date only one crystal

of this form has been found!

4Synthesis of polymorph 3. Nearly all crystals found on the

flocculent precipitate (see Synthesis of polymorph 2) are of the

taJ
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third form. However, a procedure has been developed to grow large

crystals of these relatively free of the flocculent precipitate.

Ni(NCS) 2 (0.10 g, 0.57 mmol), CEP (0.11 g, 0.57 mmol), and 10 ml

of distilled 4-hydroxy-4-methyl-2-pentanone (diacetone alcohol)

were mixed and filtered. The filtrate was collected in a test tube;

10 ml of absolute ethanol was added. The test tube was loosely

covered and allowed to stand for five days, during which the red

product crystals formed.

Synthesis of high temperature polymorph 4. Crystals of poly-

morph 3 react at 78 to form an orange-red phase which reverts to

polymorph 3 upon cooling below the transition temperature.

Collection and Reduction of Diffraction Data. Preliminary

Weissenberg and precession photographs exhibited systematic ab-

sences (h0,., t odd; OkO, k odd) and syrmmetry indicative of the space

group P2,/c for all three polymorphs. LauA photographs were taken

of each polymorph to determine crystal quality, and the respective

crystals were transferred to a Supper No. 455 goniometer and optically

centered on a Syntex P21 diffractometer. Most operations were per-

4,5
formed as described previously; other operations are described below.

Details of the structure analyses, in outline form, are presented

in Table I.

Solution and Refinement of the Structures: General. Initial

computational work on polymorph 2 was performed on the University

PDP-10 computer, using local versions of programs described'

It



i 4
previously. Further work on polymorph 2 and all computational

work on the other polymorphs were carried out on a Syntex XTL struc-

ture determination system.6 The analytical scattering factors of

Cromer and Waber were used; 7 a real and imaginary components of

anomalous scattering were included in the calculations for all

nonhydrogen atoms.

Polymorph 1. The initial Ni, two P and two S atom positions

were determined from a three-dimensional Patterson synthesis. A

trial structure factor calculation based on the derived coordinates

of these five atoms and a Wilson plot scale factor gave R = 0.433.

All of the remaining nonhydrogen atoms except for one nitrile nitrogen

atom were located from subsequent difference Fourier syntheses and

structure factor calculations. Initially, only the positional par-

ameters were refined; the isotropic temperature factors of the Ni,

P's, and the isothiocyanate atoms were then allowed to vary. The

bond lengths and angles involving the second isothiocyanate chain

N!2, C'2', S:2 ) were unreasonable, and their coordinates were there-

fore fixed at their initial positions to ensure relative linearity.

Table IT lists the positional and isotropic temperature factors for

all atoms located.

Owing to (a) the high mosaicity w - 3') of even the best of all

available crystals, and (b) the considerable disorder present in the

structure, our analysis was of rather limited success. However, whi2e

the bond lengths and angles are of extremely low precision, we feel

that the stereochemistry and packing of the molecules has been firmly

'--
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established. Further, these latter features of the crystal struc-

ture compare favorably with features present in the crystal struc-

tures of polymorphs 2 and 3 (see Discussion).

Polymorph 2. In the initial data collection, 3449 reflections

were collected, 1965 with F2 > 3 c(F) 2. The structure was solved

with considerable difficulty from a complicated pseudosymmetrical,

three-dimensional Patterson synthesis. The complexes occupy the two

independent centers of symmetry (0,0,0) and (1/2,0.1/2), which leads

to a face-centered arrangement. The face-centered pseudosymmetry

was strengthened by the accidental near-coincidence of the Ni-P

vectors in the two independent complexes. After the 2Ni, 2P, and 2S

atoms were located correctly, the positions of the remaining non-

hydrogen atoms were determined from subsequent structure factor

and difference Fourier calculations. Least squares refinement with

isotropic temperature factors for these atoms led to R = 0.118.

A geometry calculation and difference Fourier synthesis revealed

considerable disorder in one of the cyanoethyl chains (C(18.),

C(19), C(20), N(81). An extensive recollection of the data

was undertaken with the hope of improving the overall refinement of

the disordered structure (Table I . The final parameters of the

initial study were used to commence further refinement. With

all nonhyrogen atoms refined anisotropically, and fixed (rCH

0.95 A) calculated H atom positions, R = 0.068, Rw = 0.092 at conver-

gence. However, the molecular geometry of C(18) - C(19) - C(20) -

N 8) was unreasonable. Hence, the positions of the latter atoms were
47
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8

fixed at values corresponding to difference-map coordinates, with

isotropic temperature factors. Least-squares refinement under these

constraints led to R = 0.070, Rw = 0.107. Table I reports the

final residual density distributions based upon this refinement.

A weighting scheme analysis showed no systematic dependence of

wEIFOI - IFc 1 2 on IFoL , (sin e)/%, parity of indices, or sequence

number. Table III lists the positional and isotropic temperature

factors for all atoms, while anisotropic temperature factors appear

in Table IV.

Polymorph 3. The positional parameters for the Ni, S, and P

atoms were located from a three-dimensional Patterson synthesis.

The complex occupies a single crystallographic center of symmetry.

A subsequent structure factor calculation and difference Fourier map

yielded the positions of the remaining nonhydrogen atoms. After

refinement with anisotropic temperature factors for all atoms, a

difference Fourier map revealed all the hydrogen atom positions. At

convergence, a weighting scheme analysis (vide supra) revealed no

systematic dependences. Table V lists the positional and isotropic

temperature factors for all atoms, while Table VI lis t he aniso-

tropic temperature factors.

r/ Description of the Structures

Figure 1 shows the "pseudo-octahedral" configuration of poly-

morph 1. This "pseudo-octahedral" configuration is achieved by two

distinct features: an intramolecular nitrile N atom nonbonded con-

tact, and, trans to it, an intermolecular S atom nonbonded contact.

- .w W .- ---.--.-- r
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Figures 2 and 3, molecular structures of polymorphs 2 and 3, res-

pectively, show the relationship between polymorph 1 and the other

two forms. Polymorph 2 is "pseudo-octahedral" by virtue of only

intramolecular nonbonded nitrile N-Ni contacts. (The two independenL

square planar complexes of polymorph 2 have similar configurations

to other NiX 2(CEP) 2 monomers.)
3 Polymorph 3 is "pseudo-octahedral"

by virtue of only intermolecular nonbonded S atom contacts (P - Ni - St

= 96.5 ; N il) - Ni - S' = 75.7-). Hence, the packing of polymorph 1

is a "combination" of polymorphs 2 and 3.

Polymorph 1, Owing to the poor quality of the crystals and the

extensive disorder, we here emphasize only the stereochemistry and

packing of this species. The intramolecular nonbonded Ni-N .nitrile 1

distance ,3.1 A' and the nonbonded intermolecular Ni-S distance

3.6 A are similar to those found in the other polymorphs vide

infra'; the Ni-P bond lengths "2.3 A and 2.2 A\ and the Ni-N 'iso-

thiocyanate' bond lengths .12.1 A and 2.0 A' are reasonable. Bond

lenaths and anales of the ordered atoms are listed in Table VII.

Polvmorph 2. Figure 2 depicts the two independent, centro-

symmetric square planar complexes, showing the relatively short

3.17 - 3.18 A) nonbonded Ni-N contacts. While the overall geometry

4,9,10
of the phosphine ligand is normal for CEP complexes, the con-

figuration of the phosphine ligand is different in each complex.

Si However, one cyanoethyl chain in each case has a similar conformation,

dj -
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which produces the short Ni-N contact. This interaction persists

throughout NiX2CEP 2 structural chemistry in a variety of structures,

and it is strikingly absent in PdCI 2CEP 2
I I Pertinent bond lengths

and angles are listed in Table VIII. The Ni-N-C angles of 171.21(72'

and 174.88177)0 are within normal limits for square planar Ni,II)

12,13
complexes. The Ni-P '2.21412) and 2.217(3) A"distances and

the nonbonded Ni-N 'nitriWle distances are shorter than those found

in other square planar TiX 2CEP 2 complexes.
11'14

X Ni-P Ni-N (nitrile

Cl 2.2391) A 3.31

2,234 1) 3.26

- Br 2,250'1) 3.35

I 2.264 3) 3.41

This is not unexpected in view of the lessened steric reouiremerits

around the Ni centers in the present case.

Polymorph 3. The phosphine ligand geometry and the Ni-N-C angle

of 17 1.3 2 (2 7 )' are within experimentally observed ranges. The Ni-P

12. 239~~ ~A) distance is longer '0.022 3\ A) than in polymorph 2,

which may be due to greater steric requirements around the Ni center.

The two short, symmetry-related, intermolecular nonbonded S atom

cc-tact distances are 3.48 'sum of van der Waals radii = 3.40 A

and the Ni-S'-C1 angle is 151.8 , Other bond lengths and angles are

listed in Table IX,

7,:I.



Discussion

Dependence of Polymorphism on Solvent. The choice of solvent

for preparation plays a crucial role in both the particular poly-

morph obtained, as well as the amounts of other forms which arise.

Mixing or grinding of Ni(NCS) 2 and CEP, without any solvent, in-

variably yields polymorph 1. Use of an acetone-ethanol mixture

again results in predominantly polymorph 1. Crystals of the other

polymorphic forms will form on the resultant flocculent precipi-
tate (polymorph 1) but these crystals account for less than 5% of the mas

Use of acetonitrile results only in polymorph 1, while crystalliza-

tion from diacetone alcohol yields only polymorph 3. It is prob-

able that polymorph 1 is at least the kinetically favored crystalline

form because of its preferential formation in most organic solvents

as well as in the absence of solvents.

The formation of polymorph 3 in diacetone alcohol may be due

to slight, but preferential solubility differences. A diacetone

alcohol chelated nickel complex has been independently isolated;
4

however, none of the A-hydroxy ketone complex (Ni(diacetone alcohol" 2}

4,

Ni(NCS) 4 (CEP)2 ), was obtained when diacetone alcohol was added to

the reaction mixtures.

Solid-State Reactivity of the Polymorphs. Visual observations

and DSC studies showed no indication of polymerization, as observed

in the chloride and bromide analogues, even at elevated temperatures.

471



12

However, a reversible solid-state transformation was observed in

polymorph 3, at 780C. Figure 4 shows the reaction proceeding with

a distinct front in the 10113 direction, the "chain" direction

kvide infra), accompanied by an apparent increase in crystal volume.

The new yellow-orange form is polycrystalline, and its powder pat-

tern (Table X) is indicative of a low symmetry crystal system. Upon

cooling below 78'C, the crystal reverts to polymorph 3 (Figure 4b),

and the crystal or remaining fragment regains the original external

morphology. After approximately eight weeks, the crystal or frag-

ment recovers mostof the original "single crystal" diffraction properties

presumably due to a slow "annealing" process. It is not possible to

accelerate the "annealing" process by heating.

Crystal Structures. Neither elevated temperature nor pressure

effected the interconversion of the three room temperature stable

polymorphs. The crystal structure of polymorph 2 (Fig. 5) shows the

isolated molecules loosely associated via van der Waals interaction. The

crystal structures of polymorphs 1 and 3 show an interesting feature

(Fig. 6). In polymorph 1 the complexes related by the 21 screw

axis form a helical arrangement by virtue of Ni-S interactions. The

two helices which run through the unit cells are not "crosslinked."

However, in polymorph 3, which also consists of helices, the com-

plexes are crosslinked via Ni-S interactions. It is likely that the

.1 lack of strong interactions between the helices in polymorph 1 con-

tributes to the low crystallinity of this complex. It is also

* .-- +
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possible that the slow "annealing" process, which occurs in the

reversibly-transformed polymorph 3 samples, is a reestablishment

of the crosslinkages broken during the phase transformation.

If one envisions a graph of configurational energies versus

all possible pathways for generating packing arrangements, only

certain pathways leading to, presumably. energy minima, would yield

the experimentally found structures. The existence of the three

room temperature forms can thus be viewed as a closed set in terms

of a "packing coordinate." Two polymorphs have distinct bonding

and packing environments while polymorph 1 possesses features

common to both.

The Conformational polymorphism observed in this work is by no

means unique and exists, for example, in substituted n-benzylidene-

15
aniline systems. In order to determine the relationship between

crystal structure and molecular conformation, one must determine,

in addition to the crystal structures themselves,(l an estimate of

the energy differences in the conformations, (2) lattice energies of

the structures, and (3) "partitioning" of the total lattice energy

into individual atomic contributions. Even though such computational

work has yet to be done, we believe that some of the trends reported

15
by Bernstein and Hagler would be observed in this system: (1) Be-

~cause the atomic environments in all three forms are not drastically

different, the relative contributions of the partial atomic energy

to the total energy will be approximately the same; and (2) no single

--j
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atom will make an anomalously large contribution to the stabiliza-

tion of a particular polymorph. However, based on the ease of forma-

tion of polymorphs 1 and 3, and the apparent difficulty in obtain-

ing polymorph 2, we believe the role of the nonbonded contacts

will be important. Needless to say, it is the sum total of these

contributions that ultimately determines the relative stabilities

of the polymorphs.

The role of CEP in promoting polymorphic transitions and poly-

morph formation appears to be crucial. The low steric requirements

of this ligand as well as its constrained 'linear C-C-N polvfunctional

quality permit various conformations, thus promoting polymorph forma-

tion.
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Table II

Atomic Coordinates and Isotropic Temperature

Factors for Polymorph 1
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Table III

Atomic Coordinates and Isotropic Temperature
a

Factors for Polymorph 2

,, Tg I N 0.C0e0 0'f £0
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Table III (cont'd)
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a Standard deviations in the least significant digit appear in

parentheses in this and subsequent tables. For atoms refined
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Table V

Atomic Coordinates and Isotropic Temperature

Factors for Polymorph 3
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Table VII
0

Selected Bond Lengths (A) and Angles (deg) for Polymorph 1

Ni-P(l) 2.30 Ni-P(2) 2.18

Ni-N(l) 2.08 Ni-N(2) 2.00

N(l)-C(l) 1.08 N(2)-C(2) 1.12

CMl-SMl 1.50 C(2)-S(2) 1.52

P(l)-C(3) 1.95 P(2)-C(12) 1.86

C(3)-C(4) 1.53 C(12)-C(13) 1.86

0(4)-C(S) 1.66 C(13)-C(1.4) 1.76

C(5)-N(3) 1.33 C(14)-N(6) 1.00

PMl)C(9) 1.55 P(2)-C(18) 1.92

C(9)-C(l0) 1.60 0(18)-C (19) 1.82

Ni-S(l)' 3.58

Ni-N(4) 3.05

P(l)-Ni-P(2) 177.4

P(l)-Ni-N(1) 86.6

P(2)-Ni-N(l) 91.6

a.j
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Table VIII

0

Selected Bond Lengths (A) and Angles (deg) for Polymorph 2

Ni(1)-P(l) 2.214(2) Ni(2)-P(2) 2.217(3)

Ni(l)-N(l) l.819(7) Ni(2)-N(2) 1.831(8)

N(l)-C(I) 1.159(11) N(2)-C(2) 1.157(12)

C(1)-S(I) 1.625(9) C(2)-S(2) 1.619(9)

P(1)-C(3) 1.828(9) P(2)-C(12) 1.790(14)

C(3)-C(4) 1.533(13) C(12)-C(13) 1.450(19)

C(5)-C(6) 1.467(13) C(13)-C(14) 1.441(21)

C(6)-N(3) 1.130(13) c (14)-N(6) 1.127(19)

P(i)-C(6) 1.805(9) P(2)-C(15) 1.823(10)

C(6)-C(7) 1.523(14) C(15)-C(16) 1.513(14)

C(7)-C(8) 1.473(18) C(16)-C(17) 1.477(15)

C(8)-N(4) 1.128(21) C (17)-N(7) 1.126(16)

P(I)-C(9) 1.828(9) P(2)-C(18) 1.895(3)

C(9)-C(10) 1.553(14) C(18)-C (19) 1.259

C(10)-C(l1) 1.441(14) C(19)-C(20) 1.564

C(Il)-N(5) 1.114(15) C(20)-N(8) 1.062

P(l)-Ni(1)-N(l) 91.19(23) P(2)-Ni(2)-N(2) 91.68(25)

N(1)-C(1)-S(I) 178.01(84) N(2)-C(2)-S (2) 179.06(86)

C(5)-C(6) -N(3) 179.28(107) C(13)-C(14)-N(6) 176.74(141)

C(7)-C(8)-N(4) 176.59(151) C(16)-C(17)-N(7) 178.25(124)

C(10)-C(11)-N(5) 178.04(119) C(19)-C(20)-N(8) 174.66

-- ,,

|t,
4

OF-4
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Table Ix

0
Selected Bond Lengths (A) and Angles (deg) for Polymorph 3

Ni-P 2.23j9(1) P-Ni-N(l) 89.21(9)

Ni-N(1) 1.826(3) N(1)-C(l)-S(1) 176.94(30)

N(1)-C(1) 1.161(4) C(3)-C(4)-N(2) 178.53(43)

C(1)-S(1) 1.617(3) C (6) -C (7) -N (3) 178.95(44)

P-C(2) 1.823(3) C (9) -C (10) -N (4) 176.47(46)

C (2) -C-(3) 1.528(4)

C(3-C(4) 1.450(5)

C(4)-N(2) 1.131(6)

P-C(S) 1.819(3)

C(5)-C(6) 1.539(5)

C(6)-C(7) 1.471(6)

C(7)-N(3) 1.137(6)

P-C(S 1.829(3)

C(8)-C(9) 1.525(5)

C(9)-C(10) 1.460(5)

C(10)-N(4) 1.128(5)

C-H methylene 0.968(11)'

Neighted average
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Table X

Interplanar d-Spacings for the High Temperature Form

0
Number d(A) Intensity

1 3.907 100

2 3.514 95

3 2.831 20

4 2.383 10

5 2.304 70

6 2.173 20

7 2.090 30

8 1.988 80

9 1.846 30

10 1.786 40

11 1.735 20

12 1.641 40

13 1.545 20

14 1.515 20

15 1.444 30

16 1.381 --

17 1.318

18 1.255

19 1.187

S

-U-' - *---- -



Figure 1. Molecular structure of polymorph 1 showing inter-and intra-

molecular nonbonded contacts to Ni.
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Figure 2. Molecular structures of (from left) the non-disordered

and the disordered polymorph 2 complexes with 500/ probability

ellipsoids for atoms refined anisotropically.
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Figure 3. Molecular structure of polymorph 3 showing intermolecular

non-bonded contacts from two neighboring molecules.
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Figure 4. (a) Polymorph 3 reacting to form the high temperature form.

The crystal is being heated to the transition temperature

(780C) on the hot stage of a Fisher Model 355 Digital Melting

Point Analyzer. The second photograph shows the front

moving across the crystal, as well as a change in crystal

shape.

(b) Demonstration of the reversibility of the reaction;

some fragmentation of the crystal occurs, but the original

0 habit is partially regenerated upon cooling (final photo-

graph,. The steel pin used as a heat source here is not

touching the crystal in the second photograph but rather

obscures the view. Occasionally, fragmentation does not

occur, and, upon cooling, the original habit is completely

regenerated.
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Figure 5. The crystal structure of polymorph 2. The dahsed lines

indicate nonbonded intramolecular Ni-N(nitrile) contacts.
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Figure 6. (a) The crystal structure of polymorph I depicting the

helical arrangements and the nonbonded Ni-S and Ni-N

(nitrile) contacts (dashed lines). (b) The crystal

structure of polymorph 3 depicting the "crosslinked"

helical arrangements and the nonbonded Ni-S contacts

(dashed lines).
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